Computational Formalism

Computational Formalism Art History and Machine Learning

Paperback (17 May 2023)

Save $9.76

  • RRP $48.56
  • $38.80
Add to basket

Includes delivery to the United States

9 copies available online - Usually dispatched within two working days

Publisher's Synopsis

Though formalism is an essential tool for art historians, much recent art history has focused on the social and political aspects of art. But now art historians are adopting machine learning methods to develop new ways to analyse the purely visual in datasets of art images. Amanda Wasielewski uses the term "computational formalism" to describe this use of machine learning and computer vision technique in art historical research. At the same time that art historians are analysing art images in new ways, computer scientists are using art images for experiments in machine learning and computer vision. Their research, says Wasielewski, would be greatly enriched by the inclusion of humanistic issues. The main purpose in applying computational techniques such as machine learning to art datasets is to automate the process of categorization using metrics such as style, a historically fraught concept in art history. After examining a fifteen-year trajectory in image categorization and art dataset creation in the fields of machine learning and computer vision, Wasielewski considers deep learning techniques that both create and detect forgeries and fakes in art. She investigates examples of art historical analysis in the fields of computer and information sciences, placing this research in the context of art historiography. She also raises such questions as which artworks are chosen for digitization, and of those artworks that are born digital, which works gain acceptance into the canon of high art.

Book information

ISBN: 9780262545648
Publisher: The MIT Press
Imprint: The MIT Press
Pub date:
DEWEY: 702.85
DEWEY edition: 23
Number of pages: 184
Weight: 340g
Height: 152mm
Width: 229mm
Spine width: 16mm