Delivery included to the United States

10% OFF Enter TENOFF at the basket

Offer expires Friday 6th June 2025 Terms and Conditions apply

Strong Rigidity of Locally Symmetric Spaces

Strong Rigidity of Locally Symmetric Spaces - Annals of Mathematics Studies

Paperback (01 Jul 1992)

Save $27.98

  • RRP $102.10
  • $74.12
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within two working days

Publisher's Synopsis

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.



The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

About the Publisher

Princeton University Press

We seek to publish the innovative works of the greatest minds in academia, from the most respected senior scholar to the extraordinarily promising graduate student, in each of the disciplines in which we publish. The Press consciously acquires a collection of titles--a coherent "list" of books--in each discipline, providing focus, continuity, and a basis for the development of future publications.

Book information

ISBN: 9780691081366
Publisher: Princeton University Press
Imprint: Princeton University Press
Pub date:
DEWEY: 516.36
Language: English
Number of pages: 195
Weight: 310g
Height: 151mm
Width: 229mm
Spine width: 15mm