Partial Least Squares Regression

Partial Least Squares Regression And Related Dimension Reduction Methods

First edition

Hardback (17 Jul 2024)

Save $4.73

  • RRP $97.35
  • $92.62
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7-10 days

Publisher's Synopsis

Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors.

Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally.

Key Features:

 Showcases the first serviceable method for studying high-dimensional regressions.

 Provides necessary background on PLS and its origin.

 R and Python programs are available for nearly all methods discussed in the book.

This book can be used as a reference and as a course supplement at the Master's level in Statistics and beyond. It will be of interest to both statisticians and applied scientists.

Book information

ISBN: 9781032773186
Publisher: CRC Press
Imprint: Chapman & Hall/CRC
Pub date:
Edition: First edition
DEWEY: 511.422
DEWEY edition: 23/eng/20240326
Language: English
Number of pages: 412
Weight: 988g
Height: 234mm
Width: 156mm
Spine width: 25mm