Publisher's Synopsis
The internal combustion engine (ICE) is an engine in which the burning of a fuel occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an oxidizer creates gases of high temperature and pressure, which are permitted to expand. The defining feature of an internal combustion engine is that useful work is performed by the expanding hot gases acting directly to cause movement, for example by acting on pistons, rotors, or even by pressing on and moving the entire engine itself. This contrasts with external combustion engines, such as steam engines, which use the combustion process to heat a separate working fluid, typically water or steam, which then in turn does work, for example by pressing on a steam actuated piston. Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats. Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol for spark ignition engines. Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy. Internal Combustion Engine Fundamentals presents a vital and factual development of the science and engineering underlying the design of combustion engines. This book, a compilation of review articles and research papers, is suitable for advanced graduate level students, researchers as well as practitioners in mechanical engineering, aeronautical engineering, and automobile engineering. Internal combustion engines are most commonly used for mobile propulsion in automobiles, equipment, and other portable machinery. In mobile scenarios internal combustion is advantageous, since it can provide high power to weight ratios together with excellent fuel energy-density. These engines have appeared in almost all automobiles, motorcycles, boats, and in a wide variety of aircraft and locomotives. Where very high power is required, such as jet aircraft, helicopters, and large ships, they appear mostly in the form of turbines. They are also used for electric generators and by industry. All internal combustion engines depend on the exothermic chemical process of combustion: The reaction of a fuel, typically with air, although other oxidizers such as nitrous oxide may be employed. The most common fuel in use today are made up of hydrocarbons and are derived from mostly petroleum. These include the fuels known as diesel fuel, gasoline, and petroleum gas, and rare use of propane gas. Most internal combustion engines designed for gasoline can run on natural gas or liquified petroleum gases without major modifications except for the fuel delivery components. Liquid and gaseous biofuels, such as Ethanol and biodiesel, a form of diesel fuel that is produced from crops that yield triglycerides such as soy bean oil, can also be used. Some can also run on Hydrogen gas. All internal combustion engines must have a method for achieving ignition in their cylinders to create combustion. Engines use either an electrical method or a compression ignition system. The internal combustion engine (ICE) is an engine in which the burning of a fuel occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an oxidizer creates gases of high temperature and pressure, which are permitted to expand. The defining feature of an internal combustion engine is that useful work is performed by the expanding hot gases acting directly to cause movement, for example by acting on pistons, rotors, or even by pressing on and moving the entire engine itself. This contrasts with external combustion engines, such as steam engines, which use the combustion process to heat a separate working fluid, typically water or steam, which then in turn does work, for example by pressing on a steam actuated piston. Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats. Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol for spark ignition engines. Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy. Internal Combustion Engine Fundamentals presents a vital and factual development of the science and engineering underlying the design of combustion engines. This book, a compilation of review articles and research papers, is suitable for advanced graduate level students, researchers as well as practitioners in mechanical engineering, aeronautical engineering, and automobile engineering. Internal combustion engines are most commonly used for mobile propulsion in automobiles, equipment, and other portable machinery. In mobile scenarios internal combustion is advantageous, since it can provide high power to weight ratios together with excellent fuel energy-density. These engines have appeared in almost all automobiles, motorcycles, boats, and in a wide variety of aircraft and locomotives. Where very high power is required, such as jet aircraft, helicopters, and large ships, they appear mostly in the form of turbines. They are also used for electric generators and by industry. All internal combustion engines depend on the exothermic chemical process of combustion: The reaction of a fuel, typically with air, although other oxidizers such as nitrous oxide may be employed. The most common fuel in use today are made up of hydrocarbons and are derived from mostly petroleum. These include the fuels known as diesel fuel, gasoline, and petroleum gas, and rare use of propane gas. Most internal combustion engines designed for gasoline can run on natural gas or liquified petroleum gases without major modifications except for the fuel delivery components. Liquid and gaseous biofuels, such as Ethanol and biodiesel, a form of diesel fuel that is produced from crops that yield triglycerides such as soy bean oil, can also be used. Some can also run on Hydrogen gas. All internal combustion engines must have a method for achieving ignition in their cylinders to create combustion. Engines use either an electrical method or a compression ignition system.