Delivery included to the United States

Foundations of Data Science

Foundations of Data Science

Hardback (08 Jul 2020)

Save $4.62

  • RRP $63.09
  • $58.47
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 2-3 weeks

Publisher's Synopsis

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

About the Publisher

Cambridge University Press

Cambridge University Press dates from 1534 and is part of the University of Cambridge. We further the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Book information

ISBN: 9781108485067
Publisher: Cambridge University Press
Imprint: Cambridge University Press
Pub date:
DEWEY: 005.7
DEWEY edition: 23
Language: English
Number of pages: 432
Weight: 936g
Height: 253mm
Width: 208mm
Spine width: 28mm