Publisher's Synopsis
Comparison of angles from historical triangulation observations dating as far back as 1932 with Global Positions System (GPS) measurements taken in 1987 indicates that rapid convergence may be taking place on decade timescales in the central and eastern part of the Ventura basin, an east-west trending trough bounded by thrust faults. Changes in angles over this time were analyzed using Prescott's modified Frank's method and in terms of a model which assumes that the regions to the north and south of the basin are rigid blocks undergoing relative motion. For the two block model, inversion of the observed angle changes over the last 28 years for the relative motion vector leads to north-south convergence across the basin of 30 + or - 5 mm/yr, with a left lateral component of 10 + or - 1 mm/yr in the Fillmore-Santa Paula area in the central part of the basin. The modified Frank's method yields strain rates of approximately 2 microrad/yr in both the east and central parts of the basin for measurements spanning the 1971 San Fernando earthquake. Assuming no east-west strain yeilds north-south compression of approximately 3.5 + or - .2 cm/yr. Comparison of triangulation data prior to the earthquake shows no strain outside the margin of error. The convergence rates determined by geodetic techniques are consistent with geologic observations in the area. Such large geodetic deformation rates, with no apparent near-surface creep on the major thrust, can be understood if these faults become subhorizontal at relatively shallow depths and if the subhorizontal portions of the faults are creeping. An alternative explanation of the large displacement rates might be that the pumping of oil in the vicinity of the benchmarks caused large horizontal motions, although it is unlikely that meter scale horizontal motions are due to oil withdrawal. These and other hypotheses are evaluated to better constrain the tectonics of this active region. Donnellan, Andrea and Hager, Bradford H. and La...