Publisher's Synopsis
This book has these three research questions need to be answered?(1)Can apply (AI) learning machine predict travelling consumer behavior? (2)Can (AI) big data gathering learning machine be replaced to human travelling marketing research method, e.g. survey or traveler psychological and travelling marketing research or travelling environment micro and macro economic human judgement of traveler consumption behavior prediction methods to predict travelling consumer behaviors more accurate? (3)Whether is AI tourism behavioral prediction tool or traditional tourism market research method better to predict tourism market behavior?Nowadays, many airline firms or travelling agents hope to apply different methods to predict travelling consumer behaviors in order to know what will be future next month, even next year travelling market destination choice and travelling package design preferable choice activities and travelling consumers travelling packages or travelling destination taste changes to help them to choose to implement what kinds of travelling marketing strategies or what are travelling packages or airline ticket prices more reasonable or more accurate range price level to attract travelers choose to the airline or travel agent to buy paper or e- ticket or help them to arrange travel package more attractive. Hence, if the travel agent or airline can apply the most suitable travelling consumer behavioral prediction method to predict how and the reasons why future travelling consumers' choice will be changed to influence their frequent travelling destination or travelling package choice. It will have more beneficial intangible advantages to compare the non-predictive travelling consumer behavioral variable changes travel agents or airlines, e.g. what will be the hot travel entertainment destinations and tangible advantages, what are the most suitable airline and hotel reasonable price range level to attract many travelers to choose to find the airline or travel agent to help them to buy air ticket or they ought know how to design their arrange travel package which will be accepted more popular for next or next year travelling customer's hot needs .Otherwise, if they applied the inaccurate traveler consumer behavioral prediction market research methods, e.g. survey, telephone questionnaire to predict how their consumers' behavioral changes. It will waste their time and money to attempt to make wrong travelling hot destinations and travelling package design to make unattractive travelling marketing strategy to cause travelling customer number to be reduced. In my this book first part, I concentrate on explain why artificial intelligence (AI) big data gathering tool will be one kind of good traveler consumer behavioral prediction tool to be chose to apply to predict traveler consumer consumption behavior concerns when and why and how their travelling behavior will change. I shall indicate some cases examples to give reasonable evidences to analyze whether (AI) big data gathering tool will be one kind suitable tool to be applied to predict when and how and why travelling consumer behavioral changes. If (AI) big data can be one kind tool to attempt to be applied to predict when and how and why travelling consumer behavioral changes. Will it make more accurate to compare other kinds of methods to predict travelling consumer behaviors, e.g. survey, telephone questionnaire? Does it have weaknesses to be applied to predict travelling consumer behaviors, instead of strengths? Can it be applied to predict travelling consumer behaviors depending on any situations or only some situations? Finally, I believe that any readers can find answers to answer above these questions in this book.