A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

Paperback (13 Jan 2019)

Not available for sale

Includes delivery to the United States

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the clock synchronization problem. Malekpour, Mahyar R. Langley Research Center WBS 534723.02.02.07.30

Book information

ISBN: 9781793971807
Publisher: Amazon Digital Services LLC - KDP Print US
Imprint: Independently Published
Pub date:
Language: English
Number of pages: 28
Weight: 91g
Height: 279mm
Width: 216mm
Spine width: 2mm