Technique to Eliminate Computational Instability in Multibody Simulations Employing the Lagrange Multiplier

Technique to Eliminate Computational Instability in Multibody Simulations Employing the Lagrange Multiplier

Paperback (11 Oct 2018)

Not available for sale

Includes delivery to the United States

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel. Watts, G. Marshall Space Flight Center ...

Book information

ISBN: 9781728699745
Publisher: Independently Published
Imprint: Independently Published
Pub date:
Language: English
Number of pages: 36
Weight: 109g
Height: 280mm
Width: 216mm
Spine width: 2mm