Adversarial Learning and Secure AI

Adversarial Learning and Secure AI

Hardback (31 Aug 2023)

Save $4.72

  • RRP $69.39
  • $64.67
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 72 hours

free Reserve & collect

Copies available at Blackwell's Oxford Broad Street

Reserve in Store |  Check stock elsewhere

Publisher's Synopsis

Providing a logical framework for student learning, this is the first textbook on adversarial learning. It introduces vulnerabilities of deep learning, then demonstrates methods for defending against attacks and making AI generally more robust. To help students connect theory with practice, it explains and evaluates attack-and-defense scenarios alongside real-world examples. Feasible, hands-on student projects, which increase in difficulty throughout the book, give students practical experience and help to improve their Python and PyTorch skills. Book chapters conclude with questions that can be used for classroom discussions. In addition to deep neural networks, students will also learn about logistic regression, naïve Bayes classifiers, and support vector machines. Written for senior undergraduate and first-year graduate courses, the book offers a window into research methods and current challenges. Online resources include lecture slides and image files for instructors, and software for early course projects for students.

About the Publisher

Cambridge University Press

Cambridge University Press dates from 1534 and is part of the University of Cambridge. We further the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Book information

ISBN: 9781009315678
Publisher: Cambridge University Press
Imprint: Cambridge University Press
Pub date:
DEWEY: 006.31
DEWEY edition: 23
Language: English
Number of pages: 350
Weight: 866g
Height: 175mm
Width: 251mm
Spine width: 25mm