Quantization, Nonlinear Partial Differential Equations, and Operator Algebra

Quantization, Nonlinear Partial Differential Equations, and Operator Algebra 1994 John Von Neumann Symposium on Quantization and Nonlinear Wave Equations June 7-11 1994, Massachusetts Institute of Technology, Cambridge, Massachusetts - Proceedings of Symposia in Pure Mathematics

Hardback (30 May 1996)

Not available for sale

Includes delivery to the United States

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

Recent inroads in higher-dimensional nonlinear quantum field theory and in the global theory of relevant nonlinear wave equations have been accompanied by very interesting cognate developments. These developments include symplectic quantization theory on manifolds and in group representations, the operator algebraic implementation of quantum dynamics, and differential geometric, general relativistic, and purely algebraic aspects.""Quantization and Nonlinear Wave Equations"" thus was highly appropriate as the theme for the first John von Neumann Symposium (June 1994) held at MIT. The symposium was intended to treat topics of emerging signifigance underlying future mathematical developments. This book describes the outstanding recent progress in this important and challenging field and presents general background for the scientific context and specifics regarding key difficulties.Quantization is developed in the context of rigorous nonlinear quantum field theory in four dimensions and in connection with symplectic manifold theory and random Schrodinger operators. Nonlinear wave equations are exposed in relation to recent important progress in general relativity, in purely mathematical terms of microlocal analysis, and as represented by progress on the relativistic Boltzmann equation. Most of the developments in this volume appear in book form for the first time. The resulting work is a concise and informative way to explore the field and the spectrum of methods available for its investigation.

Book information

ISBN: 9780821803813
Publisher: American Mathematical Society
Imprint: American Mathematical Society
Pub date:
DEWEY: 530.120151474
DEWEY edition: 20
Language: English
Number of pages: 224
Weight: 652g
Height: 230mm
Width: 184mm
Spine width: 19mm