Game Theory for Data Science: Eliciting Truthful Information

Game Theory for Data Science: Eliciting Truthful Information - Synthesis Lectures on Artificial Intelligence and Machine Learning

Paperback (30 Sep 2017)

Not available for sale

Includes delivery to the United States

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

Intelligent systems often depend on data provided by information agents, for example, sensor data or crowdsourced human computation. Providing accurate and relevant data requires costly effort that agents may not always be willing to provide. Thus, it becomes important not only to verify the correctness of data, but also to provide incentives so that agents that provide high-quality data are rewarded while those that do not are discouraged by low rewards.

We cover different settings and the assumptions they admit, including sensing, human computation, peer grading, reviews, and predictions. We survey different incentive mechanisms, including proper scoring rules, prediction markets and peer prediction, Bayesian Truth Serum, Peer Truth Serum, Correlated Agreement, and the settings where each of them would be suitable. As an alternative, we also consider reputation mechanisms. We complement the game-theoretic analysis with practical examples of applications in prediction platforms, community sensing, and peer grading.

Book information

ISBN: 9781627057295
Publisher: Morgan & Claypool Publishers
Imprint: Morgan & Claypool Publishers
Pub date:
DEWEY: 005.7015193
DEWEY edition: 23
Language: English
Number of pages: xv, 135
Weight: 431g
Height: 212mm
Width: 148mm
Spine width: 23mm