Effect of Full-Chord Porosity on Aerodynamic Characteristics of the NACA 0012 Airfoil

Effect of Full-Chord Porosity on Aerodynamic Characteristics of the NACA 0012 Airfoil

Paperback (07 Nov 2018)

Not available for sale

Includes delivery to the United States

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

A test was conducted on a model of the NACA 0012 airfoil section with a solid upper surface or a porous upper surface with a cavity beneath for passive venting. The purposes of the test were to investigate the aerodynamic characteristics of an airfoil with full-chord porosity and to assess the ability of porosity to provide a multipoint or self-adaptive design. The tests were conducted in the Langley 8-Foot Transonic Pressure Tunnel over a Mach number range from 0.50 to 0.82 at chord Reynolds numbers of 2 x 10(exp 6), 4 x 10(exp 6), and 6 x 10(exp 6). The angle of attack was varied from -1 deg to 6 deg. At the lower Mach numbers, porosity leads to a dependence of the drag on the normal force. At subcritical conditions, porosity tends to flatten the pressure distribution, which reduces the suction peak near the leading edge and increases the suction over the middle of the chord. At supercritical conditions, the compression region on the porous upper surface is spread over a longer portion of the chord. In all cases, the pressure coefficient in the cavity beneath the porous surface is fairly constant with a very small increase over the rear portion. For the porous upper surface, the trailing edge pressure coefficients exhibit a creep at the lower section normal force coefficients, which suggests that the boundary layer on the rear portion of the airfoil is significantly thickening with increasing normal force coefficient. Mineck, Raymond E. and Hartwich, Peter M. Langley Research Center...

Book information

ISBN: 9781730942952
Publisher: Independently Published
Imprint: Independently Published
Pub date:
Language: English
Number of pages: 98
Weight: 249g
Height: 280mm
Width: 216mm
Spine width: 5mm